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Abstract In this paper, we describRoxyBot—06, the top-scoring
TAC Travel agentin 2006. Here, we rev&aixyBot’s secrets.
One feature that distinguish®oxyBot—06 from most other
TAC agents is that it builds noisy (i.e., stochastic) moadls
the auctions’ clearing prices, rather than predicting ritepn
prices via point estimates. Given stochastic price preuist
stochastic optimization is at the heart RéxyBot—06. Our
approach is decision-theoretic rather than game-theoreti

In this paper, we describe our entrant in the travel divi-
sion of the 2006 Trading Agent Competition (TAC). At
a high level, the design of many successful autonomous
trading agents can be summarized as follows: (i) price
prediction: build a model of market prices; and (ii) opti-
mization: solve for an approximately optimal set of bids,
given this model. To predict, we simulas@nultaneous
ascending auctionsTo optimize, we apply theample

average approximatiomethod. Both of these proce- REPEAT
dures might naturally be abbreviated SAA; hence the title {start bid interval
of this paper. Our agent dominated the preliminary and 0. Download current prices and winnings from server

seeding rounds of TAC Travel in 2006, and emerged as

champion in the finals in a photo finish. 1. predict build stochastic models

a. flights Bayesian updating/learning
b. hotels simultaneous ascending auctions

1 Introduction c. entertainmentsample historical data

A TAC Travel agent is a simulated travel agent whose task is 2
to organize itineraries for a group of clients to travel taan
from TACTown. The agent’s objective is to procure travel
goods that satisfy its clients’ preferences as inexpehsase

possible. Travel goods are sold in simultaneous auctions: {end bid interva}

o flights are sold by the “TAC seller” in dynamic posted- | UNTIL game over
pricing environments; no resale is permitted

e hotel reservations are sold by the “TAC seller” in multi-
unit ascending call markets; specifically, 16 hotel reser-
vations are sold in each hotel auction to the 16 highest
bidders at the 1#h highest price; no resale is permitted

e agents trade tickets to entertainment events among then?— RoxyBot-06’s Architecture
selves in continuous double auctions; resale is permittedfable 1 depicts the high-level architecture RéxyBot—06.

Flights and hotel reservations are complementary gooddifter current prices and winnings are downloaded from the
flights are not useful to a client without the complementaryserver, the key prediction and optimization routines are ru
hotel reservations, nor vice versa. Tickets to entertaiime Output from the optimization routine is a bidding policyath
events, e.g., the Boston Red Sox and the Boston Symphong, @ mapping from auctions to bids. Finally, current bids
Orchestra, are substitutable. are uploaded to the server by three separate threads, one for
The TAC Travel environment models the problem faced byflights, one for hotels, and one for entertainment.
an agent bidding in simultaneous auctions for complemgntar TAC Travel games last 9 minutes. Flight price updates are
and substitutable goods, e.g., an agent bidding on eBay. Atlaroadcast every ten seconds. The eight hotel auctionsarlear
high-level, the design of many successful TAC Travel agentshe minute at each of minutes 1 through 8, with exactly one
(e.g., WalverindChenget al., 2004 andATTac [Stoneet al, auction closing. (The precise auction to close is decided at
2003) can be summarized as: (@ice prediction build a  random, with all open auctions equally likely to be seledted
model of the auctions’ clearing prices, and fptimization  For the others, the server reports the “hypothetical qtanti
solve for a near-optimal set of bids, given this model. won” by each agent as well as the current ask price. Although

. optimize sample average approximation

3. Upload current bids to server
(three separate threads)

Table 1: A high-level view oRoxyBot-06's architecture.



the entertainment auctions clear continuously, price tggda Conditioned orx, however, flight prices may increase de-
are broadcast only every 30 seconds. crease (i.e., the expected perturbation can be positive@t n
RoxyBot—06 discretizes time into bid intervals. Since ative). To facilitate their flight deliberations, one of ttasks
server updates are received only every ten seconds, itesifficfaced by TAC agents is to model the probability distribution
for TAC Travel agents to reason about intervals of this langt P;[z] associated with at timet for use in predicting current
For simplicity, assume the prediction and optimizationand future flight prices. Models of probability distributi®
steps are instantaneous. Under this assumption, baseé on tain be built using Bayesian updating.
current bidding policy, (i) the flight thread bids on a flight ~ Given a probability distribution?, [2], to predict a flight
only if its price is near its predicted minimum; (i) the hbte price, RoxyBot could simulate a random walk from time
thread bids on a hotel only if it is moments before the end of + 1, ..., t" and select the minimum price. In practice, how-
a minute; and (i) the entertainment thread places bids imever, onlyRoxyBot-06's hotel and event price predictions are
mediately. In practice, the prediction and optimizaticepst ~ stochastic; its flight price predictions are point estimdte.,
are time-consuming, so the timing of bid placement in TACconstant across scenarios). For each flight and for each poss

Travel games is often complex. ble value of the hidden parameteRoxyBot-06 simulates an
“expected” random walk (see Algorithm 1), selects the min-
3 PricePrediction imum price, and then outputs as its prediction the expecta-

tion of these minima, averaging according®z]. Alter-
In this section, we describe hoRoxyBot-06 builds its  native scenario generation procedures are also possible: e
stochastic models of flight, hotel, and event prices. Eactan agent could sample instead of calculating expected per-
model is a discrete probability distribution, representgd turbations. Our choice of flight price prediction method was
a weighted set of “scenarios.” Each scenario is compriseguided by time constraints.
of a vector of “current” prices—prices at which goods can
be bought and sold during the current stage—and a vectof|gorithm 1 ExpectedMinimum_Price(t, ', p;, P;)
of “future” prices—prices at which goods can be bought and for all = € R do
sold after the current stage. For flights, the current (arriijt . "
buy price isRoxyBot-06’s prediction of the expected mini- ]fgin[z]__t :[Cio Y do
mum price during (or after) the current stage. For hoteks, th T b_— t’R ?
current buy prices are predicted by simulating simultaseou [a, 8] ;ge angér, 2) .
ascending auctions to approximate competitive equilibriu A = 3¢ {expected perturbatign
prices. There are no future buy prices for hotels. For enter- pr = pr—1 + A {perturb pricg
tainmentRoxyBot-06 predicts current and future buy and sell pr = max(150, min(800, p-))
prices based on historical data. if pr < min[z] then
min[z] = p,

3.1 Flights end if
. . . _ end for
Flight prices follow a biased random walk. They are initial-  gnd for

ized uniformly in the rang€50, 400], and constrainedtore-  yetyrn S Py[2] min]z]
main in the rangé150, 800]. At the start of each TAC game
instance, a boung on the final perturbation value is selected
for each flight. These bounds are not revealed to the agents.
What is revealed to the agents is a sequence of random flig 2 Hotels

prices. Every ten seconds, TACAIr perturbs the price of eactiRoxyBot-06’s approach to hotel price prediction is inspired by
flight by a random value that depends on the hidden param@Valverine’s [Chenget al, 2004, in which the tatonnement
ter  and the current timeas follows: given constantsc R~ method is used to approximate competitive equilibrium
andT > 0, each (intermediate) bound on the perturbationprices. In a competitive market where each individual’s ef-

value is a linear function of. fect on prices is negligible, equilibrium prices are priets
. which supply equals demand, assuming all producers are
2(t,z) =c+ =(z —¢) (1)  profit-maximizing and all consumers are utility-maximigin

Formally, letp'denote a vector of prices. §{7) denotes the

The perturbation value at tintés drawn uniformly from one ~ cumulative supply of all producers, andifp) denotes the
of the following ranges: cumulative demand of all consumers, thgp) = Z(p) —y(p)
. denotes the excess demand in the market. The tatonnement
o Ul-ca(t,2)), if x(t, 2) > 0 process adjusts the price vector at iteratios 1, given the
o Ul—c,+d|,if z(t,z) =0 price vector at iteration and a sequendgy,, } of adjustment
. rates:pn11 = pn + an2(ph).

o Ulz(t 2), +,if 2(t,z) <0 In the TAC game c(on'zext, tatonnement is not guaran-
For TAC's parameter settings, namely= 10 and7 =  teed to converge Walverine forces convergence by letting
540, with z uniformly distributed in the rangB = [-10,30], «, — 0. We force convergence by modifying the adjust-
given no further information about, flight prices are ex- ment process to simulat@multaneous ascending auctions

pected to increase (i.e., the expected perturbation isipgsi  (SimAA) [Cramton, 200k In SimAAs prices increase as



long as there is excess demand but they can never decreasiécted price during (or after) the current bid interval.

Drnt1 = Pn + o max{Z(p,),0}. RoxyBot-06's estimates of entertainment ticket prices are
Following [Wellmanet al, 2004, we evaluate these ho- based on historical data from the past 40 games. To gener-

tel price predictions using two metrics: Euclidean dis&anc ate a scenario, a sample game is drawn at random from this

and “expected value of perfect prediction” (EVPP). Eudide collection, and the sequences of entertainment bid, ask, an

distance is a standard way of measuring the difference bedransaction prices are extracted. Given such a historgdon

tween two vectors, in this case the actual and the predicteductiona, let trade,; denote the price at which the last trade

prices. The value of perfect prediction (VPP) for a clientbefore timei transacted; this value is initialized to 200 for

is the difference between the value of the best package fdsuying and O for selling. In addition, létd,; denote the bid

the client based on the actual prices and the value of the beptice at timei, and letask,; denote the ask price at timie

package for the client based on the predicted prices. EVPP is To predict current buy price in auctiarat timet, RoxyBot-

the expected VPP averaged over the client distribution. 06 first computes the minimum among the historical trade and
In Figure 1 (left), we reproduce a scatter plot generatedisk prices at time and the current ask price in the present

by the Walverine team that evaluates the hotel price predic-game. The current buy price is then constrained to be above

tion methods of TAC 2002 agents at the beginning of thethe current bid price in the present game. Without this fatte

game. We add two versions of SimAA and tatonnement to theonstraint, the agent might be inclined to buy a good at a&pric

plot. Following Wellmaret al.[Chenget al., 2003, one uses that is lower than the outstanding bid, which is impossible.

56 “expected” clients; the other samples 56 random clientsormally,

Eight agents play the TAC game, each with eight clients. . .

Each agent knows the preferences of its own clients, but mugt/”-?"at = max{currBid, min{tradeat, askat, currdsk}}

simulate the demand of the 56 others. An expected client cor: t sell price i dicted | - ©)

responds to one of ten different arrival/departure paiith) w € current sell price IS predicted analogously:

average hotel and entertainment values. curr_sellgy = min{ currAsk, max{tradeqss, bidqs, currBid}}
We interpret each prediction with 56 random clients as a 3

sample scenario, so that a set of such scenarios representRoxyBot-06 predicts the future buy price in auctiarafter
draws from a probability distribution over competitive €qu timet¢ as follows:
librium prices. The vector of predicted prices that is eatdal

and plotted is the average of multiple (40) such predictions future buyq, = i:tﬂ{llifl__j min{tradea;, askai}  (4)
The predictions generated using sets of random clients are . . )
not as good as the predictions with expected clients, aghou !N words, the future buy price at each time- ¢ +1,..., T'is

with more than 40 sets of random clients, the results mighthe minimum of the ask price after timieand the most recent
improve. Still, using random clients helps us make better intrade price. The future buy price at tiniés the minimum

As hotel auctions clos&oxyBot-06 updates the predicted future sell price after timeis predicted analogously:
clearing prices of the open hotel auctions. We experimented  r,ype_sell , = max max{tradeq;, bide;}  (5)
with two ways of constructing interim price predictions.eTh i=t+1,..,T

first is to fix the prices of the closed auctions at their clegri L.

prices and then to run SimAA or tatonnement with expectedt  Optimization

or random clients. The second is to distribute goods fromae characterize RoxyBot-06's  optimization routine as

the closed auctions to the clients who want them the mostj) stochastic, (i) global, and (i) dynamic. It takes as i

and then to exclude any closed auctions in further runs oput stochastic price predictions; it simultaneously cdess
SimAA or tatonnement. (NB: We determine which clients flight, hotel, and entertainment bids in unison; and it simul
want which goods most by running SimAA or tatonnementtaneously reasons about bids to be placed in both current and
as usual.) Note that we can only distribute goods to randomuture stages of the game.

clients. It is not clear how to distribute goods to “expected \We assume that our agent’s decisions do not affect
clients,” which are aggregate clients rather than reahtdie  prices and express the game-theoretic bidding problem as a
Figure 1 (center and right) shows that the predictions basegecision-theoretic optimization problem. The influence of
on the distribution method are better than the others. Hotelpther agents on prices is represented by a set of scenayios or
that close early tend to sell for less than hotels that cla®e |  more generally, a distribution over prices.

hence, any method that makes relatively constant pred&tio  HenceRoxyBot-06 is confronted with a dynamic stochas-

all throughout the game is bound to suffer. tic optimization problem. It solves this problem by collags
. the future into only two relevant stages—"current” and “fu-
3.3 Entertainment ture”. This approach is reasonable in TAC, and other similar

During each bid intervaRoxyBot-06 predicts current and fu- combinations of sealed-bid and continuously-clearingisim
ture buy and sell prices for tickets to all entertainmenhése  taneous auction environments, as we now explain.

These price predictions are optimistic: the agent assutnes i The key bidding decisions are: what goods to bid on, at
can buy (or sell) goods at the least (or most) expensivegricewhat price, and when? Since hotel auctions close in an un-
that it expects to see before the end of the game. More speciknown random ordeRoxyBot-06, like most TAC agents, op-
ically, each current (or future) price predictionis thettge-  erates under the assumption that all hotel auctions cldbke at
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Figure 1: Left: EVPP and Euc. Dist. for TAC 2002 agents as waglbur prediction methods: Tat. and SImAA; expected and
random. Center and Right: EVPP and Euc. Dist. in TAC 2006 offmiel price prediction methods with distribution as the
game progresses.

end of the current stage. Hence, the only pressing decisiori®tel bids can only be as high (or as low) as the maximum
regarding hotels are: what goods to bid on and at what price@minimum) price in the scenarios although an agent may be
There is no need to consider the timing of bids. Accordinglywilling to pay more (less). We overcome this problem by
the only model of hotel prices is the current one. adding to the set of scenarios generated by our stochatic
In contrast, since flight and entertainment auctions are cormodel additional scenarios in which one of the hotels is
tinuous, a trading agent should reason about the timing ogfriced higher/lower than in any other scenario. This way the
its bids for these goods. Still, it suffices to consider onlyagent may bid higher or lower than predictions in case the ac-
two pricing models. The current model predicts the bestual clearing prices are unexpectedly high or I®wxyBot-06
good prices during the current bid interval, whereas the fuoptimized with respect to 30 scenarios generated as describ
ture model predicts the best good prices after the current biin Section 3 and up to 30 extra scenarios with high and low
interval, conditioned on current prices. prices. These choices were guided by time constraints.
We express the bidding problem as a stochastic program
where current and future prices are given by corresponding
stochastic models. The sample average approximation (SAA Com petition Results
method is a numerical means of approximating solutions to

stochastic programs via Monte Carlo simulatimed and e present the results of the last day of the TAC-06 Finals (80
Shapiro, 2002 The main idea is simple: (i) sample a set games). We omit the first two days because agents can vary
of scenarios from the input distribution, and (i) appro&®  cross days, but cannot vary within. Presumaly, the erdries
the solution to the stochastic program by solving an approxne |ast day are the teams’ preferred versions of the agents.

imation of the stochastic optimization problem which incor \jean scores are plotted in Figure 2 and detailed statistics a
porates only the sample scenariBexyBot—06 samples sce- tapylated in Table 2.

narios by simulating SimAA as described in Section 3.2.
The ILP formulation of SAA applied to the TAC bidding
problem is included in Appendix A. The power of this for-

There is no single metric such as low hotel or flight costs
that is responsible foRoxyBot's success. Rather its success
derives from the right balance of contradictory goals. In pa

mulation is in its ability to make globally optimal decismn . ; ) ¢
Flight, hotel, and entertainment bids are optimized togeth ;[,I\,ChL”ZréSr?g\,?gt Irrh(:igtfawgg t?iOtele?,gﬂ m;ﬂ;?]?gr? eﬂ\'/ge?]tt C?S’;ﬁ‘
to produce a consistent bidding policy. The first stage deci- 9 getnpp y 9 P

sions are the bids that are submitted now. The second stageWe compareRoxyBot with two closest rivals:Walverine
decisions are the bids that can be submitted later. All hotefnd WhiteDolphin. Comparing toWalverine first, Walver-
bids are submitted now; flight and entertainment bids can b#e bids lower prices (by 55) on fewer hotels (49 less), yet
submitted now or later. wins more (0.8) and wastes less (0.42). It would appear
The formulation of the problem facilitates reasoning notthat Walverine’s hotel bidding strategy outperfornmioxy-
only about what bids to place but also about when to plac&ot’s, except thatRoxyBot earns a higher hotel bonus (15
them. The fundamental issue regarding TAC flight decisiongnore). RoxyBot also gains an advantage by spending 40 less
is a common one: ba|ancing concern about future price inon fllghts and earning 24 more in total entertainment prOflt.
creases with the benefit of delaying commitment to travel on A very different competition takes place betweoxyBot
particular days. We model this tradeoff explicitly by gigin andwhiteDolphin. WhiteDolphin bids lower prices (120 less)
the agent the option of buying flight and entertainment tiske on more hotels (by 52) thaRoxyBot. RoxyBot spends much
now at the current prices or later at the scenario’s (i.éur&)  more (220) on hotels thamhiteDolphin but makes up for it by
prices. If the agent decides to buy a flight or entertainmengarning a higher hotel bonus (by 96) and a lower trip penalty
ticket later, it can submit different bids in different seeins.  (by 153). It seems thathiteDolphin’s strategy is to minimize
One of the weaknesses of the ILP formulation is that itscosts even if that means sacrificing utility.



Rox | Wal Whi SIC Mer L-A kin UTT
# of Hotel Bids 130 81 182 33 94 58 15 24
Average of Hotel Bids|| 170 115 50 513 147 88 356 498
# of Hotels Won 15.99 | 16.79 | 23.21 | 13.68| 18.44 | 14.89| 15.05 | 9.39
Hotel Costs 1102 | 1065 | 882 1031 | 902 987 | 1185 | 786
# of Unused Hotels 2.24 1.82 9.48 0.49 | 4.86 1.89 0.00 | 0.48
Hotel Bonus 613 598 517 617 590 592 601 424
Trip Penalty 296 281 449 340 380 388 145 213
Flight Costs 4615 | 4655 | 4592 || 4729 | 4834 | 4525 | 4867 | 3199
Event Profits 110 26 6 -6 123 -93 -162 -4
Event Bonus 1470 | 1530 | 1529 || 1498 | 1369 | 1399 | 1619 | 996
Total Event Profits 1580 | 1556 | 1535 || 1492 | 1492 | 1306 | 1457 | 992
Average Utility 9787 | 9847 | 9597 || 9775 | 9579 | 9604 | 10075 | 6607
Average Cost 5608 | 5693 | 5468 || 5765 | 5628 | 5605 | 6213 | 3989
Average Score 4179 | 4154 | 4130 || 4010 | 3951 | 3999 | 3862 | 2618

Table 2: Last day of Final 2006. 80 games.
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The success of an autonomous tradmg agent, partlcularl D. McAllester. Decision-theoretic bidding based on leardensity models in simul-

TAC agents, often hinges upon two key modules:pfice taneous, interacting auctionsournal of Artificial Intelligence Researcti9:209—
prediction in which the agent builds a model of market[ 242, 2003. ’

H . i Fni H i H Wellmanet al, 2004 M.P. Wellman, D.M. Reeves, K.M. Lochner, and Y. Vorobey-
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ample, at the core dtoxyBot’s 2000 architecturEGreenwald
and Boyan, 200bwas adeterministicoptimization problem, A TAC Bidding Problem: SAA
namely how to bid given price predictions in the form of e . .
point estimates. In spite of its effectiveness in the TAC-OOThe problem of bidding in the simultaneous auctions thataia

h terize TAC can be formulated as a two-stage stochastic anogin
tournament, a weakness of the 2000 design wasRiwgtBot which bids are placed in the first stage and winnings are atiéatin

could not explicitly reason about variance within prices. | he second stage. In this appendix, we present the impletiemt

the years since 2000, we recast the key challenges faced Rgtails of the integer linear program (ILP) encodedimxyBot-06
TAC agents as several differestbchastidbidding problems  that approximates an optimal solution to this stochastggm.

(seelGreenwald and Boyan, 20D)4whose solutions exploit  This ILP formulation of the TAC bidding problem assumes éine
price predictions in the form of distributions. In spite afro  prices, that is, constant economies of scale. Table 3 h&ighe
perseveranceRoxyBot fared unimpressively in tournament price constants that comprise scenarios. Each scenatimlexa
conditions year after year. .. until 2006. Half a decade & th “current” price, which is the best price expected within stage,
laboratory spent searching for bidding heuristics thatean and a “future” price, which is the best price expected fromgtart

. - . . f the next stage until the end of the game, for each good pexce
loit stochastic information at reasonable computatiexal ~ © . )
gense finally bore fruit, aRoxyBot emerged vi(F:)torious in hotels, Wﬁ ich do not ;‘ave future buy prices because theyeaeet
' ) as one-shot auctions).
TAC-06. In a nutshell, the secret &oxyBot-06's success Table 3 also lists the decision variables that pertain td ear-

is: hotel price prediction by simulating simultaneous aste  tion type. For hotels, the only decisions pertain to buyrsffeight

ing auctions, and optimization based on the sample averagsw; for flights, the agent chooses buy offers for now and dtert
approximation method. for entertainment events, both buy and sell offers are madeamd

Figure 2: 2006 Finals’ Scores and 95% Confidence Intervald®



later. “Now” decisions are taken under uncertainty. Theytwe A.4 Objective Function
bids to be placed on each good, necessarily constant aaress s

narios. “Later” decisions are scenario dependent. Unicgytés trip value
resolved (i.e., prices are known) in scenarios; there, fitcas to < ~
simply choose the quantity of each good to trade. poapax Z Z Uetyers —event —
s Lo
Flights Scenario Decision Type flight cost
buy now | current priceM, bid 1apq current future hotel cost
buy later| future price), quantityv, —— —_——
Z Z Mas,uapq + yasvas - Z Mas/lapq:|(6)
o — Af Q,p>Mas Ap,Q,p>Mas
Hotels Scenario Decision Type
buy now | current priceM bid f14p4
event cost event revenue
Events Scenario Decision Type A s N
- - —— —N—
buy now | current priceMa, bid f1apq event =Y | > Maspiapet Yasvas — > NasVapgtZasCas
buy later| future price), quantityv, s Ae | Qp=Mas Q,p<Nas
sell now | current priceN, bid vy
sell later | future priceZ, quantity(, @

Table 3: Auction types and associated scenario prices anfi-2> Constraints

decision types.
yp S et €1 VeeCseS (@)
T

Al I ndeX SetS allocation buy

own

ac A |ndexes_ the set of goods, or auctlon§. chstgat < 6?+Uas N Z faps Ya € Ass€S )
ay € Ay indexes the set of flight auctions. X Q.
an € Ay indexes the set of hotel auctions. allocation by
ae € Ac indexes the set of event auctions. —_— =
c € C indexes the set of clients. Z%stgat < Oa + Z tapg VYa € Ap,s €S (10)
p € P indexes the set of prices. oT Qp2Mas
g € Q indexes the set of quantities il oun Y =L
(i.e., the units of each good in each auction). Z YestGat < Oa + Vas + Z fapg — Cas + Z Vapq
s € S indexes the set of scenarios. C,T Q,p>Mags Q.p<Nas
t € T indexes the set of trips. Va € Ae,s €S (11)
A.2 Constants > tapg > Ha Va € Ap  (12)
Ga: indicates the quantity of goadneeded to complete trip Pe
M, indicates the current buy price of, ax, a. in s. D Hapg S1 Va€AfUALUALgeQ (13)
N.s indicates the current sell price of in scenarios. r
V. indicates the future buy price af;, a. in scenarics. ;”‘”’q <1 Va€Ae,qe@ (14)

Z.s indicates the future sell price af in scenarios.
'H,, indicates the hypothetical quantity won of haigl.
O, indicates the quantity of goadthe agent owns.

Equation (8) limits each client to one trip in each scendtigua-
tion (9) prevents the agent from allocating flights that #gloot own
or buy. Equation (10) prevents the agent from allocatinglsahat

U, indicates client’s value for tript. it does not own or buy. Equation (11) prevents the agent friboa a
.. . cating event tickets that it does not own or buy and not sejligion
A3 Deuson Variables . o (12) ensures the agent bids on at least HQW units in eachdnatel
I' = {7es:} is @ set of boolean variables indicating whether or o - Equation (13) prevents the agent from placing more tee
not clientcis allocated trigt in scenarics. buy offer per unit in each flight, hotel, or event auction. &iipn
M = {papq} is a set of boolean variables indicating whether (14) prevents the agent from placing more than one sell qféer
to bid pricep to buy thegth unit of as, as, ae now. unit in each event auction. An agent might also be constram
N = {vapq} is a set of boolean variables indicating whether to place sell offers on more units of each good than it ownd/aan
to bid pricep to sell thegth unit of a. now. not to place buy (sell) offers for more units of each good ttren
Y = {vqs} is a set of integer variables indicating how many market supplies (demands).
units ofay, a. to buy later in scenarie.

7 = {(as} is a set of integer variables indicating how many
units ofa. to sell later in scenarie.



