Comparison of Bidding Algorithms for Simultaneous Auctions

Seong Jae Lee

Bidding Problem

- Simultaneous Auctions
- Substitutable & Complementary Goods

Miami Beach

Introduction

Bidding Problem: Goal

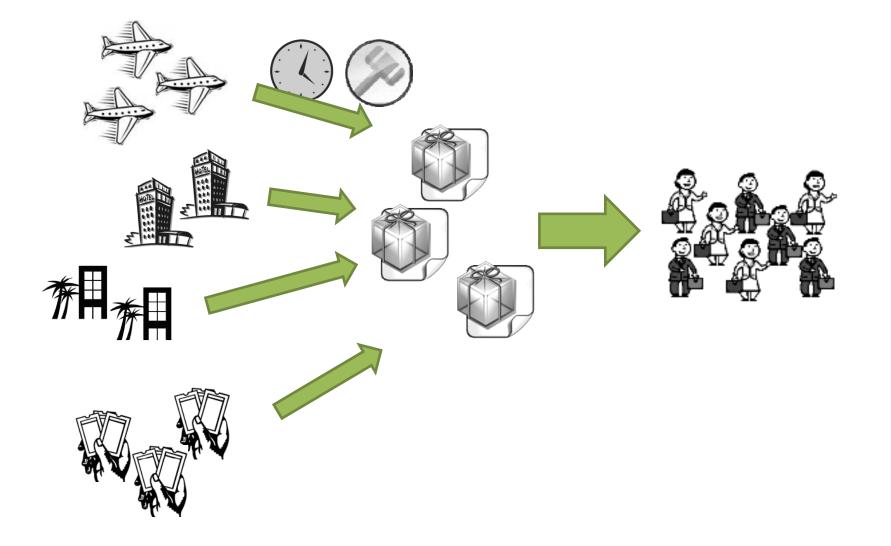
• The goal of bidding problem is to find a set of bids *B* that maximizes:

$$\int_{s} p(s)v(s,B)ds$$

- s : clearing price.
- -p(s): probability that the clearing price is s.
- v(s,B) : value when the clearing price is s, and bid is B.

Introduction

Trading Agent Competition



Algorithms Algorithms

- Sample Average Approximation
- Marginal Value Bidding

Name	Performance	Algorithm
ATTac01	2000 1 st , 2003 1 st	Marginal Value
Walverine	2004 2 nd , 2005 3 rd , 2006 2 nd	Marginal Value
RoxyBot	2000 2 nd , 2002 final	Marginal Value
RoxyBot	2005 final, 2006 1 st	SAA

Algorithms Review: the Goal

• The goal of bidding problem is to find a set of bids *B* that maximizes:

$$\int_{s} p(s)v(s,B)ds$$

- s : clearing prices.
- -p(s): probability that the clearing price is s.
- v(s,B) : value when the clearing price is s, and bid is B.

Algorithms Sample Average Approximation

- SAA algorithm samples S scenarios from clearing price distribution model.
- Find a set of bids *B* that maximizes:

$$\frac{1}{|S|} \sum_{s \in S} v(s, B)$$

– S : a set of sampled clearing prices.

Sample Average Approximation

- There are infinitely many solutions!
 - -e.g. S=1, s=100, if B>s, v(s,B)=1000-s, else v(s,B) = 0.
 - B can be any number between 100 and 1000.
- SAA Bottom: maximize

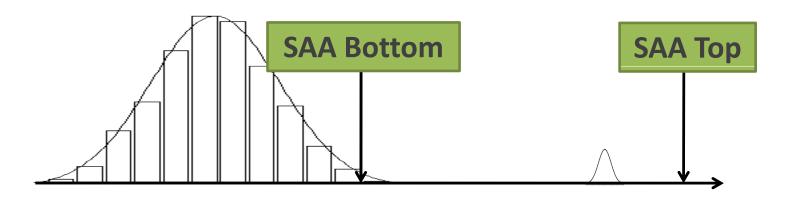
$$\frac{1}{|S|} \sum_{s \in S} v(s, B) - \epsilon B$$

• SAA Top: maximize

$$\frac{1}{|S|} \sum_{s \in S} v(s, B) + \epsilon B, \quad b < c \quad \forall b \in B$$

Sample Average Approximation

- Defect
 - The highest bid SAA Bottom considers submitting may be below clearing price.
 - SAA Top may pay more than the highest price it expects.



Marginal Value based Algorithms

- Marginal Value of a good: the additional value derived from owning the good relative to the set of goods you can buy.
- Characterization Theorem [Greenwald]
 - -MV(g) > s if g is in all optimal sets.
 - -MV(g) = s if g is in some optimal sets.
 - -MV(g) < s if g is not in any optimal sets.

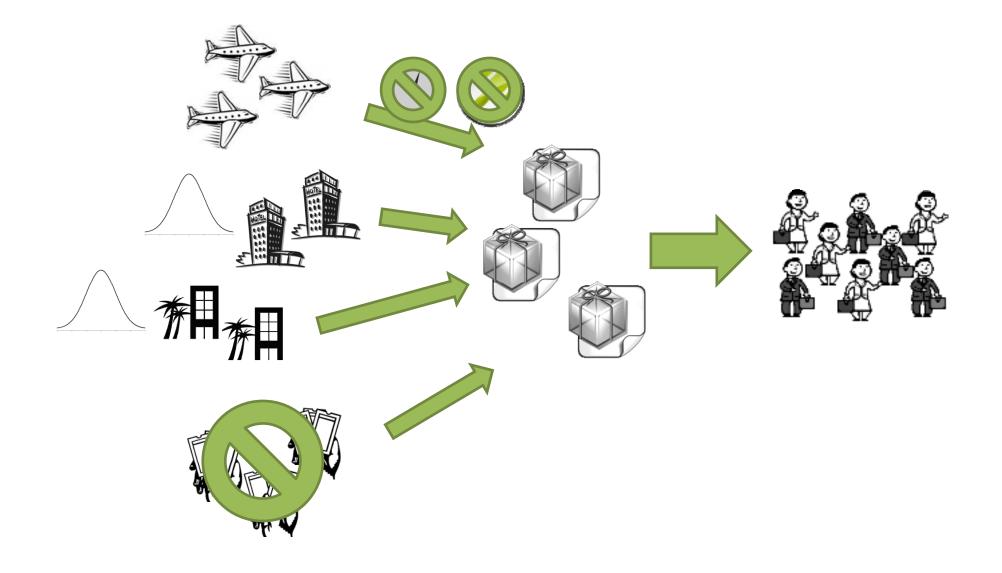
Marginal Value based Algorithms

- Use MV based algorithms which performed well in the TAC:
 - TMU/TMU*: RoxyBot 2000
 - BE/BE* : RoxyBot 2002
 - AMU/SMU : ATTAC

Experiments Experiments

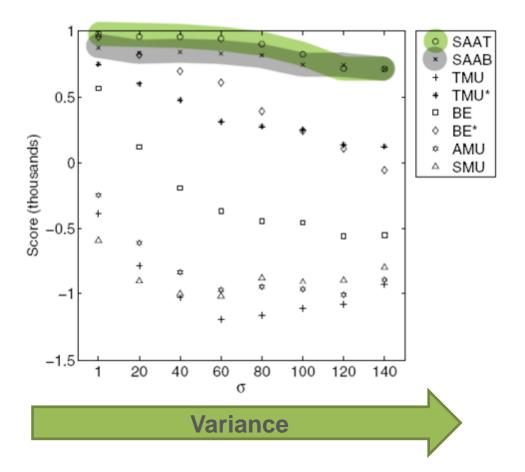
- Decision-Theoretic Setting
 - Prediction = Clearing Price (normal dist.)
 - Prediction ~ Clearing Price (normal dist.)
- Game-Theoretic Setting
 - Prediction ~ Clearing Price (CE price)

1. Decision-Theoretic (perfect)

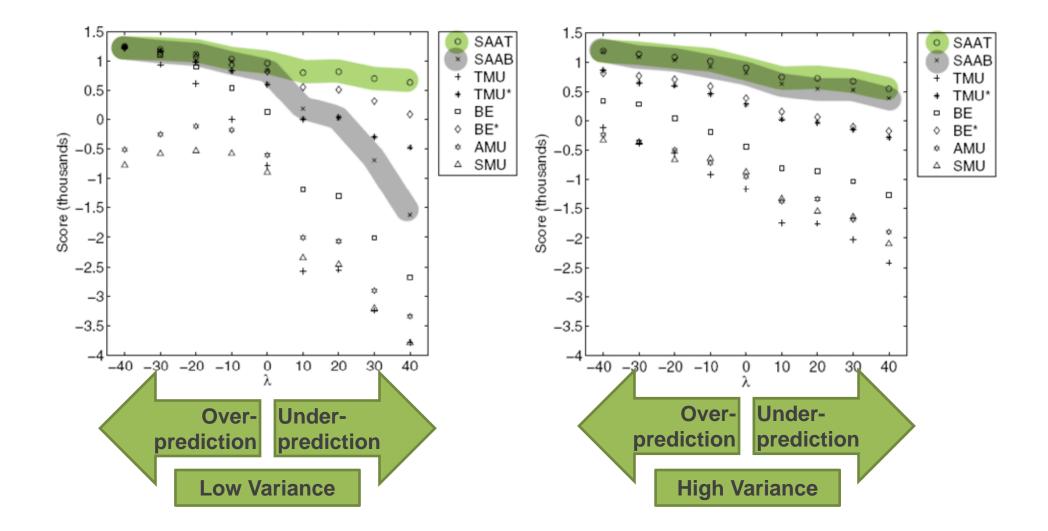


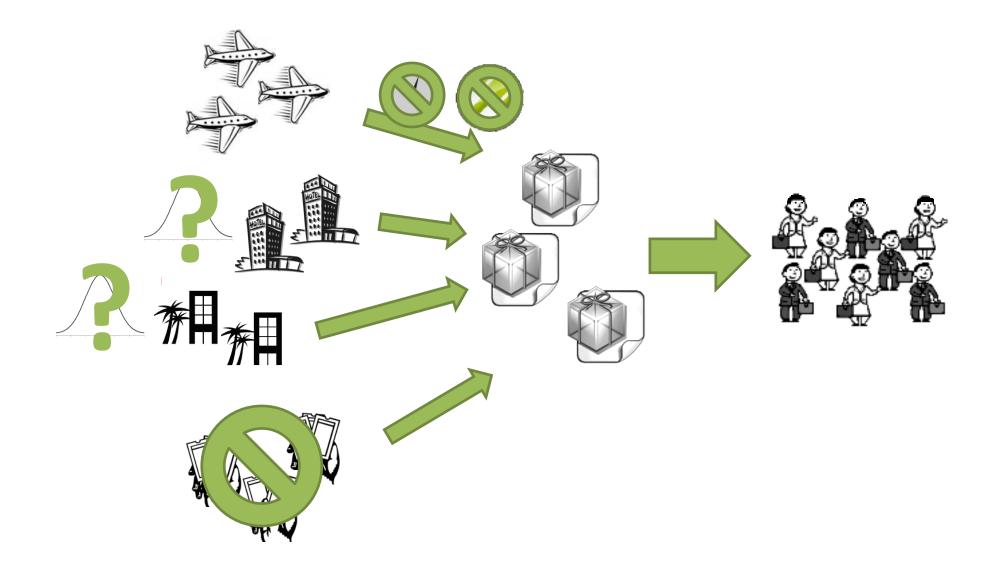
1. Decision-Theoretic (perfect)

- SAAs are more tolerant to variance
- SAAT ~ SAAB at a high variance

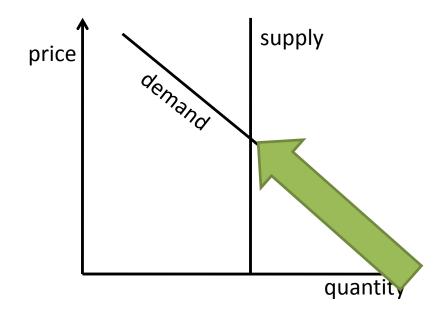


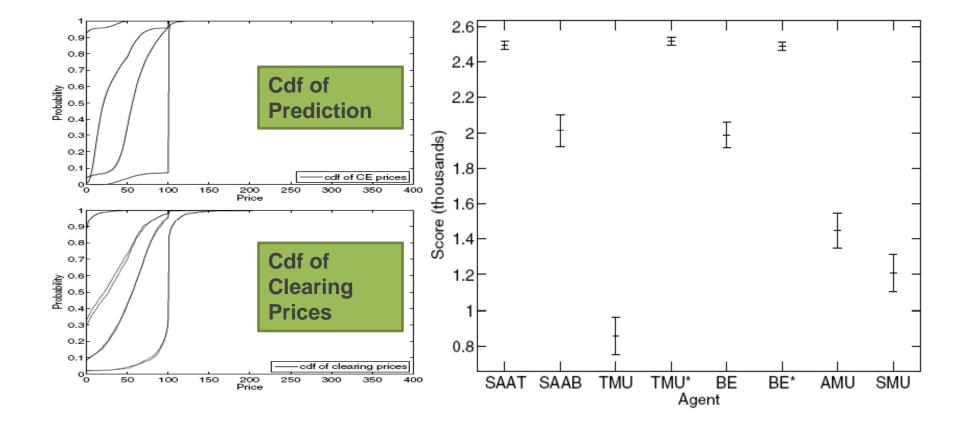
2. Decision-Theoretic (noise)

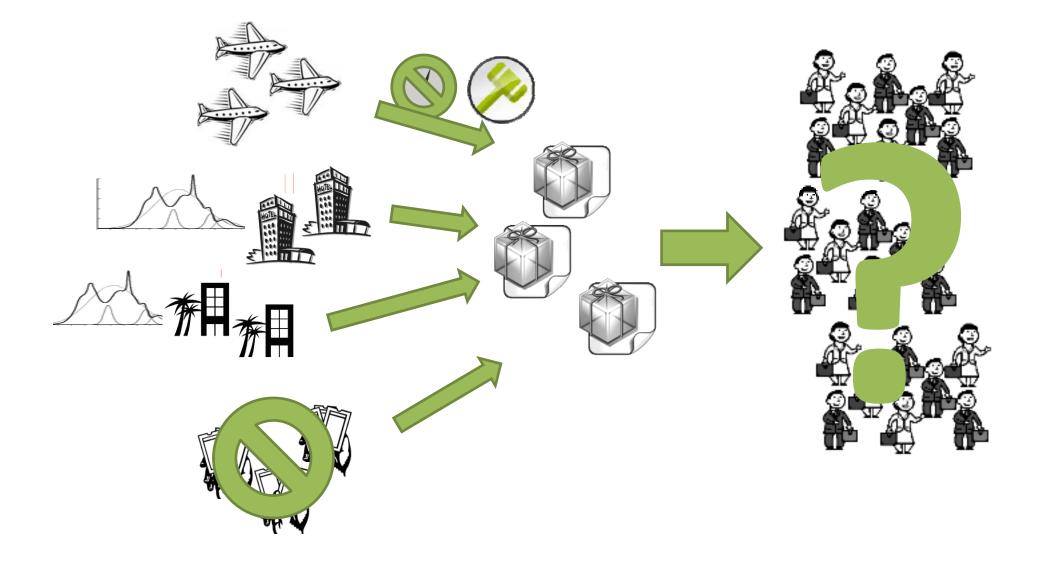


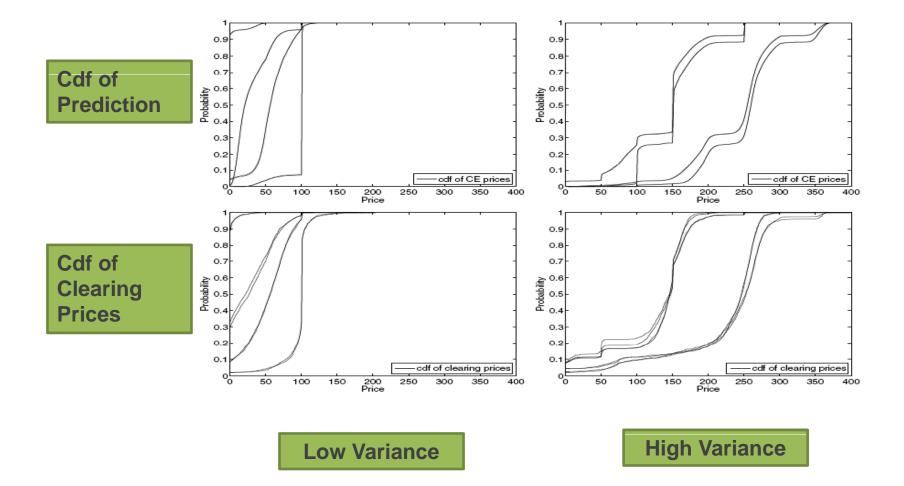


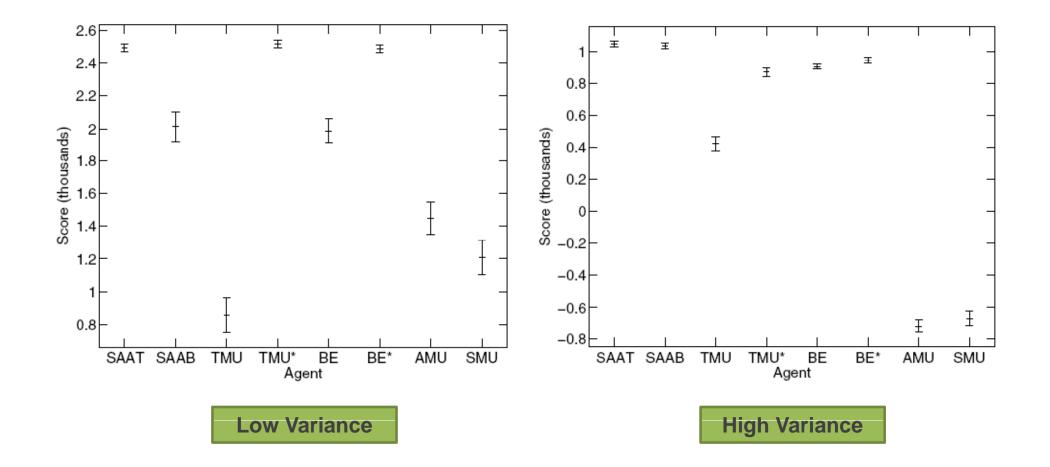
- Competitive Equilibrium [Wellman '04]
- $P_{n+1} = P_n + MAX(0, \alpha P_n(demand supply))$











Conclusion

- Sample Average Approximation
 - Optimal for decision-theoretic setting, with infinite number of scenarios.
 - More tolerant to variance.
 - More tolerant to noise.
 - SAA Top is tolerant to noise in general.
 - SAA Bottom is tolerant to noise in high variance.
 - Showed a better performance even in a game-theoretic setting.

Questions?

Acknowledgements

- Andries van Dam
- Amy Greenwald
- Victor Naroditskiy
- Meinolf Sellmann